The History of BGAN Punks and a discussion with their Creator

“REKT DEKT DEKT, GELD I’VE BEEN WALKING HOME IN SONA, I’M NOT GOING HOME I’VE BEEN WALKING HOME, THERE’S NO MONEY.” 

Such are the indelible lyrics of Mark Cuban’s Bastard. More specifically, one of his 12 BGANs (short for Bastard GAN Punks). Created by Berk Özdemir, the V1 and V2 collections are renowned for being fashioned by a specialized branch of AI known as Generative Adversarial Networks (hence the acronym “BGAN”). 

(One of Mark Cuban’s V2 BGANs)

With notable holders like Cobie and Punk 6529 (not to mention recently gaining a place in FloorDAO’s Treasury), BGANs are a homage to – and evolution of – the original CryptoPunks by Larva Labs. Overflowing with a layered creative ecosystem that predates Art Blocks, some consider them to be true digital art. 

The V1 collection of 76 NFTs was released in 2020, followed by the much larger V2 BGANs (11305 in total), minted on March 7, 2021. This was one month earlier than the much talked-about Bored Ape Yacht Club art NFTs. Both series include a range of genderless, carefully curated traits (unlike CryptoPunks). And, as mentioned, the core stylistic influence and aesthetics are determined entirely by AI. 

(BASTARD GAN PUNKS V1)

What are Generative Adversarial Networks (GAN)? 

A generative adversarial network (GAN) is a machine-learning model introduced by Ian Goodfellow in 2014, whereby two neural networks compete to create more accurate, or better fitting, data. They are used to generate new data for scenarios across sectors. Ian Goodfellow’s appearance on the Lex Fridman Podcast explains more.

Use cases are also found in contemporary art: content like images, audio, video etc. can be given to the neural networks to learn from, as the two models compete with each other to output higher-scoring answers. After a training session, new file(s) are generated that contain the AI’s interpretation of the original dataset and what it learned. 

Berk’s integration of GAN technology was a case of creative experimentation while undergoing a Master’s programme at ArtScience Interfaculty

Unable to afford an original CryptoPunk, Berk decided to make “interesting enough” remixes of them. BGANs remix “genes” representing a variety of traits from several original CryptoPunks, so there is no direct equivalent or correlation between them and the original NFTs by Larva Labs. Nobody knows which specific Punks were used to create the new interpretations by Berk, thus the origin of the name and concept “bastards.”

BASTARD GAN PUNK V2 #11188

When detailing his creative process, Berk states: 

“The first iteration of Bastard Gan Punks (v1) were trained on 10,000 original Cryptopunks and gave birth to many weirdo adorable motherfuckin’ bastards. The process worked very well and I was so happy with getting weird interesting results. However, since some traits of Cryptopunks exist on just a few bastards (like AliMason Marcobello talks to the creator of BGAN Punks, a collection of algorithmically-generated NFT artworks, about art, technology, and creation.en, Ape, Zombie, or Beanie etc), most of the rare traits were lost during the model training.

For BGANPUNKS V2, I chopped all Cryptopunks’ attributes, made cross-gender copies of ones made for only one gender (BGANPUNKs are queer!) categorized them in different folders (Hairs/Heads, Eyes, Glasses, Smokes etc.), and wrote a script to make all possible combinations of those traits. I also added skin and accessory color randomization + a couple of custom traits I’ve drawn myself. 

To be honest, it was a painful and shitty process because I had to do all the cuts by hand and had to optimize the script via trial and error, maybe hundreds of times and not make a million unnecessary images at the end, which would take a lifetime to train with my shitty GPU.”

Separate smart contracts for IP and licenses (commercial rights):

Alongside AI, BGANs have also catered to the obfuscated and at times contentious nature of intellectual property by granting full commercial rights to holders. Through a separate smart contract, holders have the option to tailor specific conditions of the IP for each NFT directly on the Ethereum blockchain.  

Traits and the BGAN Ecosystem:

Unlike the static metrics that help collectors filter through an ever-expanding constellation of NFTs, BGANs were released mostly without any pre-determined trait categories except for CALM AF, HYPE AF, and ‘Bastardness’ (a broader category with varying rarity metrics). 

Instead, over the ensuing months and through a meritocratic process aligned with the ethos of Web3, the community decided on the specific traits they wanted BGANs to embody. This initiative was later streamlined through a living document (authored by Snooplion) known as the Trait Constitution:  In essence, if any holder believes that BGANs should change or modify their traits, all they need to do is follow the process of the trait constitution and submit a snapshot proposal for community voting.

The current definitive traits of BGANs include:

  • HYPE TYPE (animated/still). There are 847 animated or “HYPED AF” vs. 10,458 still or “CALM AF” BGANS.  
  • SONG WORD COUNT
  • BASTARDNESS
  • BACKGROUND (still BGANS)
  • GLITCH PATTERN (still BGANS)
  • BAD HABITS (still BGANS)
  • FACING DIRECTION (still BGANS)
  • TYPE (still BGANS)
  • BACKGROUND GLITCH LEVEL (animated BGANS)
  • BACKGROUND MOOD (animated BGANS)
  • FLOATY HEAD (animated BGANS)
  • SPEEDOMETER (animated BGANS)
  • NUM OF FRAMES (animated BGANS)
  • HEAD TURNS (animated BGANS)

A more detailed explainer on how to sort through and understand these traits has been written by 888mooncat.

Adding to the world of BGANs, Berk also created the Glicpixxx (V1 & V2) collections, Artglixxx collection, and an associated $Glix Utility token.

Glicpixxx V1 

Glicpixxx V1 is the first of the Glicpixxx experiments by Berk. As with the lighthearted origins of BGANs, the idea of Glicpixxx started in 2020 after a streaming session on Twitch when Berk opened a favored encoder software (a processing program) called “GLIC” and started playing around with images. After taking one of the encoded images, he divided it into 36 individual squares on Photoshop and minted them (as a test) using OpenSea’s storefront contracts. 

GLICPIXVER001 CANVAS – #0

However, before releasing the GLICPIXXXVER002 GRAND COLLECTION, Berk updated the parameters for the original smaller series (V1) so that holders of the originals (that were created using the OpenSea storefront) could transfer it to a new contract and mint an equivalent copy. This was largely because (at the time) OpenSea used unverified contracts and stored all data on their API. Not to mention that the tokens functioned as singular ERC-1155 rather than the conventional ERC-721 standard for NFTs.

A unique aspect of the new contract for GLICPIXXXVER001 that Berk created with his friend (CANER) is the added NFT (TOKEN ID #00) .It functions as a programmable canvas that reflects all 36 GLICPIXXXVER001 in 6×6 tiles. 

Similar to async.art (or related programmable blockchain projects), the separate 36 GLICPIXs function as layers for the master #00 token. Any holder of the original series can change the render of the master token by flipping their NFT, rotating it, or swapping its position in the canvas with someone else. 

Each time a token holder changes the parameter of the layer they own, they also change the state of the (master) contract, and as Berk stated, “a P5 sketch rendering the tile canvas will start reading from these new parameters.” The code can be found inside the smart contract. 

Glixpixxx V2 – Grand Collection

On the same day he experimented with GLICPIXXXVER001, Berk generated an additional 48 images (1024 x 1024) with GLIC – all with a different range of presets, codecs, and parameters. A Python script was then used to explore the visuals in more detail, resulting in an additional 40k (32 x 32) source images, each with a unique and complex variety of patterns and colors. 

GLICPIXXXVER002 #5770

While preparing for the launch of BGANs V2 in 2021, Berk used a random selection of the GLICPIXXX as backgrounds for transparent Bastards and found an organic synergy with the aesthetics of the two collections. It wasn’t before long that positive acclaim spread throughout the BGAN community, with people hunting GLICPIXXX, the most striking combinations. 

Although the 40k source images were originally going to be combined into a series of artistic GIFs for VIV3, after a lull in communication, Berk decided to release it as a grand collection and gift for Bastard Gan Punk holders. 

As such, GLICPIXXXVER002 was born as an ERC-721 collection consisting of 11,500 images of 32 x 32 pixels. As with V1, V2s are programmatically encoded with open source software called GLIC. The collection consists of several subcategories and unique traits that reflect the native lore of BGANs. More details can be found here

Mirroring the creative process for BGAN Punks, GLICPIXXXVER002 images were created without the predefined traits or patterns usually associated with the “layer merging, generative method.” Instead, Berk added traits according to his analysis of each separate image, and the patterns were reverse-engineered, categorized, and assigned to BOOMER CALM AF GLICPIXXX by the BGAN Punk community. https://glicpixxx.love/readme 

As an ERC-721 token with an open license, GLICPIXXX can be used by anyone as a raw asset for creative initiatives or projects like virtual worlds, games, smart watches, fashion, texture packs in Minecraft, weapon skins on an FPS game, or in combination with other unrelated NFTs. Further ideas and example use cases can be found on the main site. 

Artglixxx

ARTGLIXXX is powered by GLICPIXXX. It extends the concept and ecosystem of generative, algorithmic, programmable art by remixing the original designs of the GLICPIXXX collection. The first ARTGLIXXX series is ARTGLIXXX GENESIS, which can be minted by holding an NFT from the GLICPIXXXVER002 grand collection. 

https://opensea.io/collection/artglixxx

$Glix Utility token: 

$GLIX is an ERC-20 utility token for the GLICPIXXX ecosystem. 

Token IDs between 014999 of the ARTGLIXXX GENESIS series (aka ELDEST ARTGLIXXX) automatically yield 10 $GLIX tokens per day for holders until 2032 (10 years from the launch date). $GLIX tokens can also be burned (in increasing quantities) to mint or collect upcoming generations (or versions) of the ARTGLIXXX series. 

Further BGAN tokens were created in the ecosystem, known as $BGAN and $Bastard. $BGAN is the token used in the NFTX protocol and SushiSwap

With a more mysterious origin, the $BASTARD token was created and airdropped anonymously to all BGAN holders. After thorough due-diligence by (Qexd and Rosco), the community voted to add liquidity to it on SushiSwap. It can also be used for internal projects like minting NFTs from Berk’s copymint collection.

The official $BASTARD address is: 0x78d9a9355a7823887868492c47368956ea473618 

BGAN DAO:

As aligned with any trustless cohort of degens, the BGAN DAO (established 15 Nov. 2021) is governed through a meritocratic system of proposals that align with the constitution

At the time of writing, there are currently nine ‘Signers’ (elected by the community) who help execute valid proposals submitted on snapshot.org (here). 

The current signers include: 

  • Wassoshi – is an artist, postdoc researcher at the University of Copenhagen, and musician.
  • Dirtbaglu – an NFT collector and cryptocurrency expert with a focus on DeFi, liquidity provisioning systems such as nftx.org, and modern contemporary digital art.
  • Crypto Texan – is a Decentralized Finance Community & Marketing at @0xPolygon and an experienced podcast host with a specialization in crypto markets.
  • Qexd – is an NFT and cryptocurrency investor with a focus on credit-based stablecoins, and a host of several innovative BGANs Twitter spaces.

The DAO also includes a respected group of community moderators such as MoonOverlord and ShroomDaddy. Further moderators include JU7URNA, Masal, Rooste,r, and Lyssandros. The Bastard DAO is also currently the largest liquidity provider of the xBGANWETH SushiSwap pool. 

Interview with Berk

Given the unique ecosystem and growing developments of BGANs, it was only fitting to interview the creator, Berk, and dive further into the genesis, the creative process, and his extended thoughts on AI, NFTs, and Web3 in general. 

Mason: Why did you choose CryptoPunks for the training data? Would you still use them as a focal point today?

Berk: When I started with GAN, I had just discovered NFTs (around late 2019), and two significant projects caught my interest: CryptoKitties and CryptoPunks. I wanted to train my dataset, and such large-scale (10000+) collections seemed pretty straightforward to work on. 

I had a NVIDIA GTX 1660 Super as the graphics card, which would be like a snail for training GAN on big resolutions. So I had to be pragmatic and create a dataset with the smallest source images possible: pixel art. So choosing CryptoPunks was an arbitrary decision, but when I started getting the first results, ideas for the BASTARDS concept came, and I started minting them to create new personas on interwebz.

Mason: What made you settle on ‘11,305’ V2s instead of the conventional 10,000 collection size?

Berk: When preparing for V2, I wasn’t sure how big the collection could be. I had a model for infinite numbers, where people can concatenate a background-less bastard and a glicpixxx and mint it. But then I got feedback from Discord users that a fixed number like 10k would be better. 

Then 11,305 came kind of arbitrarily. I was curating the collection by generating outputs, putting them in the collection, and vice versa. In the end, when I said I would stop, there were 11,305 pieces.

Mason: What makes BGANs more than another CryptoPunk derivative like V3 Punks or Phunks?

Berk: Firstly, it introduces a new paradigm to PFPs and a narrative/concept aligned with the creative methodology. And in a market where a digital “Punk” became an elite flexing object, ugly productions from GAN (aka bastards without parents) have a new saying, introducing the new generation of people decentralizing this corrupted world. I think the most undervalued part of BGANs is that they are more real and humane than any of the PFPs, which claim to have a worldly character.

Mason: How did you get the ‘HYPED AF’ GIFs to loop so well?  

Berk: It’s not that complicated. Anyone who uses libraries like STYLEGAN can create those by outputting latent space interpolation. However, on V2 specifically, the gifs weren’t looping perfectly, so I had to open the source code and tweak some parameters to get almost perfect loops.

Mason: The term ‘NFT’ has been corrupted by more than a few influencers, celebrities and brands. With that in mind, other than CryptoArt, how would you define BGANs?  

Berk: Bastards constantly want to make the world beautiful. 

Mason: The visuals of the V1 and V2 collections are quite different. Stylistically, you could say that V1 resembles Francis Bacon’s paintings, whereas V2 leans more towards the conventional pixelated design of NFTs. Why is this?  

Berk: I made a mistake with V1s. Normally, CryptoPunks assets are 24×24, and for GAN training, you have to set a database consisting of images of the resolution, multiples of 32. Like 32×32, 64×64, 256×256, 1024×1024, etc. So, I upscaled the images from 24x to 32x, and it caused some distortions on some pixels. So I learned from those mistakes for V2, and they looked more like original CP and pixel art avatars (I think).

Mason: What are some of your biggest creative influences? Is there anyone in AI or blockchain that you recommend learning more about?

Berk: John Cage, John Oswald of Plunderphonics, Nick Briz, Cory Arcangel (maker of Super Mario Clouds), and Chris Novello who created the ‘Illucia’ project using code-bending.

For any artist new to the Crypto and NFT space, I highly recommend  Rhea Myers – a True OG CryptoArtist. 

And the Trash Art movement has been pretty influential.

Mason: How did Mark Cuban end up with several V2 Bastard Gan Punks?  

Berk: As I know, Haralabos Voulgaris, the former Director of Quantitative Research and Development for the Mavericks, minted a shitton of BGANs (and dumped most of them afterwards, lol) and told Mark Cuban about it.

Mason: What inspired you to start programming and move into AI, and do you have any advice for readers who want to learn more about it?

Berk: I have a piano and classical composition background, so when I saw the possibilities of programming in electronic music, I dived into the subject. Then I took a Python course and followed some other courses online. I realized that I have a super-powerful tool with programming that can do enormous tasks and experiments I can’t do myself. When I was doing my Master’s degree at ArtScience Interfaculty, I was genuinely interested in machine learning methods, so I started playing with object detection, natural language processing, GAN, audio datasets etc. I didn’t follow a specific source or book. I just jumped into everything I found interesting and was capable of fiddling with.

Mason: Are you working on any other projects?

Berk: I am currently trying to utilize Glicpixxx for fashion textile experiments. So let’s see what kind of stuff this will create!

And there is a multiplayer art experience I am working on with a small group of people, which will utilize Glicpixxx and possibly BGANs in a weirdo way. Other than those, I don’t have specific projects I am working on. Ideas come to me spontaneously, depending on the moment.

Mason: Are you proud of any particular moment in the BGAN timeline?

Berk: When I reversed the bonding curve and sent all the minting price to donations, we managed to contribute to saving a baby with spinal muscular atrophy (alongside other charitable causes).

Mason: Lastly, what would be your ideal future for generative art, NFTs, and artificial intelligence?

Berk: I think landscape needs more fun, goofiness and weirdness. Of course, I am always excited to see new technology utilizations. Still, sometimes NFTs are utilized to satisfy the collectors, to make their digital objects ‘worth holding something’. Now NFTs are a part of this world, and we will see so many new uses of digitally created objects, so I am excited to see what kind of craziness we will witness.

Conclusion:

With a pool on NFTX funded with over 10 ETH, a coordinated DAO and Treasury, more than 2,800 unique holders, and over 8,200 volume in ETH on OpenSea, BGANs have gained a reputation as something of a stablecoin equivalent in the ever transient landscape of NFTs. 

But with an eclectic community of technologists, artists, and musicians that form the collective mosaic of bastards, perhaps no better title could be had. Especially when, regardless of ETH prices, there will always be a band playing for the fam in BGAN land.  

Links: 

Let us know your thoughts! Sign up for a Mindplex account now, join our Telegram, or follow us on Twitter

Large Language Models – From Banality to Originality

Looking at the insanely popular Large Language Models (LLMs) like ChatGPT with an AGI researcher’s eye, what I see are some potentially interesting components for future AGI systems. 

Economically, I see the seed of a family of technologies that, over the next few years, is very likely to obsolete a majority of white-collar jobs, wreaking incredible disruption and ultimately moving us further toward a world in which people are liberated from the necessity to work for a living.

On the other hand, looking at them from an end user’s view, what I see are tools that are already pretty useful for some things – but are marred by a few really major and frustrating flaws.

The first major flaw is a bizarre lack of reality discrimination – LLMs are so full of shit it’s almost unbelievable, given how intelligent they are in some ways.

The second is a mind-numbing boringness and banality – such powerful cliché machines have never previously even been imagined.

I do believe, though, both of these issues can be overcome with a moderate amount of R&D effort. Which is probably going to be put in by various parties during the next couple years.

To fully overcome these weaknesses will require a true breakthrough to Artificial General Intelligence. But I suspect they can be remedied to a significant degree even without AGI, as a parallel track of development.

Generative AI vs. AGI

As an AGI guy, the first thing I need to clarify when talking about LLMs is that they are certainly not AGIs. They achieve a fair degree of generality in their intelligence, but it’s not because they generalize beyond their training and programming – it’s because their training data is so huge it covers almost everything. A tremendous variety of queries can be answered via minor variations and combinations on things in the training data. 

A generally intelligent artificial mind will have lots of uses for statistically recognizing patterns in huge datasets, and synthesizing new forms via merging these patterns together in a manner appropriate to some narrow context – the things that LLMs are good at. But I don’t think these capabilities can form the core of an AGI mind. That needs much more abstract thinking, bound up with agency, will, self-reflection, modeling of self and other. If AGI systems have these core functions fulfilled (by the OpenCog Hyperon AGI architecture my colleagues and I are working on, or something else), I think LLMs could add a lot of wonderful peripheral functions.

Toward LLMs with Reality Discrimination

LLMs trained to produce text currently have serious problems with truth-telling – they basically can’t distinguish truth from falsehood. I’ve gathered a few funny or instructive examples in a blog post on ChatGPT and AGI. There are many others easy to dig up online. I have a particular liking for the conversation where ChatGPT calls me the founder of OpenAI, the company that created it (in which I have no direct role).

A variety of approaches are being pursued to overcome this problem and make LLMs less full of shit, and I think a bunch of them will probably succeed to some degree. As an example, we at SingularityNET and TrueAGI are trying to address this with a neural-symbolic architecture: LLMs are hybridized with an OpenCog-based symbolic reasoning engine. 

This symbolic reasoning engine can extract logical relationships from an LLM, and put the LLM’s knowledge in a more structured form. It then compares the relationships between concepts with each other to identify inconsistencies. Where possible, it also compares these relationships with existing background knowledge – common-sense truths about the world like ‘water is wet’ or ‘Ben Goertzel is not the founder of OpenAI’. Inconsistencies can then be used as negative evidence to fine-tune the model – the model can be explicitly trained to unlearn the lies it contains.

I suspect these hybrid symbolic-LLM structures can greatly increase the generality and truthfulness of things like ChatGPT, even without taking us all the way to AGI.

The Banality of LLMs

But LLMs also have other problems besides their rampant BS generation – like the fact that so much of what they produce is boring clichés. Eric Hoel has called this “the banality of ChatGPT“. 

As a so-bad-it’s-good example of this banality, consider the following excerpt from a recent dialogue I had with the system:

BEN: How would you advise to manage and coordinate the project of creating a replica of the planet Jupiter with 1000x human intelligence? 

ChatGPT: For managing and coordinating a project of creating a replica of Jupiter with 1000x human intelligence, I would suggest the following steps:

  1. Define the project scope: Clearly define the goals, objectives, and deliverables of the project.
  2. Assemble the team: Recruit individuals with relevant skills and experience to form a diverse and effective team.
  3. Develop a project plan: Determine the tasks, resources, timelines, and budgets required to complete the project.
  4. Set up project management systems: Establish tools and processes to track project progress, communicate with team members, and manage risks.
  5. Monitor progress and adjust as needed: Continuously assess the project’s status and make changes as needed to ensure it stays on track.
  6. Ensure communication and collaboration: Encourage regular communication among team members and stakeholders to ensure everyone is on the same page.
  7. Anticipate and manage risks: Identify and plan for potential risks and obstacles to minimize their impact on the project.
  8. Celebrate success: Recognize and celebrate milestones and achievements along the way to keep team morale high.

Remember, creating a replica of Jupiter with 1000x human intelligence is a complex and challenging project, so it’s important to be organized, communicate effectively, and continuously adjust as needed to ensure success.

Not exactly wrong. But, shall we say, not really grappling with the particulars of the question…

Sometimes boring clichés are exactly what you want in life. If you’re writing a cover letter for a job application, or an essay for university English class… originality and quirkiness can sometimes be dangerous.

But one worries about a near-future in which boring clichés become even more common than they are now, because they’re so quick and cheap to generate using AI models. A boring dystopia.

Credit: Edward Keller

The Glory and Horror of Music LLMs

Google’s recently announced MusicLM neural model provides an intriguing case study of the intersection between “fascinatingly impressive” and “horrifyingly boring.”

You can give it a query like –

We can hear a choir, singing a Gregorian chant, and a drum machine, creating a rhythmic beat. The slow, stately sounds of strings provide a calming backdrop for the fast, complex sounds of futuristic electronic music.

– and it will generate music that fits the bill. Amazing stuff.

Except the effect is a bit like having a workaday lounge band improvise a musical passage for you. It’s very rarely artistically thrilling.

Given how impressive the functionality is, you might say this is a pretty lame complaint.

However, if such technology was used to generate music for people to listen to, the result would be an even more cliché-ridden and repetitious music sphere than record execs have already inflicted on us! Dentist’s office muzak++ forever!

Credit: Tesfu Assefa

The problem here is that averaging together everybody’s art produces art that is itself average. For some commercial purposes – e.g. background music for ads or video games – average, passable, competent music may be fine.

As a lifelong composer and improviser, I’ve generally been more interested in creating sounds that diverge from the average and the expectation – even if they get a little jarring or discordant in the process.

Of course, current neural models can be jarring and discordant too – but they will tend to do it in a way quite similar to something from their training dataset, or combining surface-level features of a few things in their training datasets.

Music is the domain in which I’ve thought most about how to overcome the banality of LLM output – because as a musician, I would really love to have an AI musician to improvise with. We already have a robot singer in our Jam Galaxy Band, and some AI-composed riffs, but a real-time AI improviser jamming alongside me is what I dream of. I don’t want boring lowest-common-denominator MusicLM-style in my band, not at all…

One approach that can be taken here is to formally introduce a theory of ‘interestingness’ – make a mathematical model of what constitutes interesting music, and then condition a MusicLM-type model to bias it to produce outputs meeting this interestingness criterion. This is not that far off from work I did in the 1990s using genetic algorithms to evolve music maximizing a ‘fitness function’ encoding a theory of musical interestingness. But LLMs allow the evolved music to incorporate patterns of various sorts from human music in a much more refined way than was possible back then.

LLMs vs. Hmmmmmm

Credit: Tesfu Assefa

Of course, this would still be a very different thing from how an AGI system would approach music. 

AGI and music could intersect in a variety of ways, but one way or another, it would involve an AGI system creating and understanding music in the context of its experience of being an agent in the world, like when the AGI in the 2013 film Her says, “I’m trying to write a piece of music that’s about what it feels like to be on the beach with you right now.”

Steven Mithen’s book The Singing Neanderthals presents an hypothesis about the origin of language and music. He posits that human communication began with a communication system he refers to as “Hmmmmm” because it had the following characteristics: it was Holistic, manipulative, multi-modal, musical and mimetic. Basically Hmmmmm combined sound and gesture and action and imitation – somewhat like the pre-verbal/semi-verbal communication one sees in one-year-old children, but with more adult-level cognitive sophistication underlying. His proposal is that Hmmmmm came first and then spawned both language and music, which evolved from Hmmmmm in their own different directions.

Cambridge Archeological Journal did a fascinating feature presenting various criticisms on the hypothesis along with Mithen’s responses. 

An interesting and fairly difficult challenge would be to coax AI agents living in a virtual world – let’s say Minecraft enhanced with plugins, or the in-process Sophiaverse virtual world – to invent language and music along the lines of the Hmmmmm theory. This could be an interesting and valuable thing for AGI researchers to do regardless of how fully accurate Mithen’s theory of evolution is. 

We could stock the virtual world with a few easy-to-use musical instruments, let’s say –

  • drums that make rhythms when hit
  • flutes that they breathe into (modulating volume and timbre with breath) while pushing buttons to make notes
  • Piano-type instruments that make notes when their keys are hit

One would then ultimately want these virtual-world proto-AGI agents – I like to think of them as “Neoterics” (new people) – to do things like:

  • Discover that dancing to music is pleasurable and creates a feeling of togetherness which fosters collective action and communication
  • Discover that drumming enthuses a group to carry out physical tasks together
  • Discover that listening to melodic music puts the mind in a state conducive to creativity

Given that the Neoterics’ emotion models will be similar to ours, yet different in the particulars, it may be that the music they create to express their own emotions and influence each others’ emotions will be significantly different from human music. Perhaps one could then train music LLMs on music made by Neoterics and get a fascinating sort of hybrid – a truly new genre of music!

Whether or not this Neoterics experiment ever gets done in precisely this form, it does highlight the big difference between an LLM approach and an AGI approach – to music or anything else. LLMs are munging and merging data patterns, and with cleverness one can work around the most immediate issues that emerge from this approach, issues such as tendencies to hallucinate or converge on clichés. AGI, however, requires a totally different approach.

Narrow AI systems like LLMs may be useful for feeding patterns into the core cognition of AGI systems, or for helping them speak fluently in the lingo of a given domain. But at core, AGI systems will necessarily be very different from LLMs – they will be what Weaver has called Open-Ended Intelligences – complex self-organizing systems that engage richly with their environments, driven by complementary-and-contradictory drives to individuation and self-transcendence. AGI systems will achieve generalization via abstraction, and the need to balance individuation and self-transcendence, while working with limited resources, will drive them to intelligent abstract understanding. When they generate language or make music, they will build it on this abstract understanding, formed from their experience, and as a result will be imaginative and truth-telling naturally – organically – rather than with an additional trick.

LLMs and other deep neural nets are going to have a big impact on society, disrupting the business models of today’s tech giants and potentially eliminating a significant percentage of human jobs. But their biggest contribution ultimately may be waking up the world to the potential of AI and thus attracting more cognitive, financial and cultural resources toward the development of AGI, which will have a far larger direct impact than even the coolest narrow AI systems.

Let us know your thoughts! Sign up for a Mindplex account now, join our Telegram, or follow us on Twitter

Technoshaman: from worldbuilding to mindbuilding: Part 2

In Part 1, I introduced the archetype of the technoshaman, one who uses XR (extended reality — VR, AR, and MR) technologies to craft multisensory digital worlds and experiences that elevate and harmonize human consciousness on a mass scale. In Part 2, we deep-dive into “digital pharmacology” and use XR to evoke alternate states of consciousness.

The social impacts of contemporary media are well known. Film and television can engage, inform and motivate on a mass scale and are no longer solely dominated by major studios who must make significant investments in productions. And the increasing democratization of media has placed great power in the hands of nearly every individual. 

More than 6.5 billion people — 80% of the world’s population — now own smartphones. Social media has enabled nearly anyone to influence the minds of hundreds, thousands, or millions of people with videos, news, opinions and niche programming.

Storytellers intentionally use the power of media and entertainment to achieve social or global change through social impact entertainment. As described by Ella Saltmarsh, stories can be tools for “building community through empathy and coherence,” connecting diverse people and generating “narratives that hold together groups, organizations, and movements.” 

Stories can re-author our personal and cultural narratives and mythic narratives or worldviews, including values, mindsets, rules and goals. “Stories deeply affect our psyche and collective direction of travel,” Saltmarsh says.

Unlike film, television, or streaming media, where passive audiences watch visuals framed on a wall or a handheld device, XR (extended reality) worldbuilders use presence, embodiment, and agency for spatial or environmental storytelling. These place us within the “storyworld” with XR’s ability to simulate real-world experiences, giving this new medium a deeper, more profound effect on consciousness. 

The power of XR

Everyone in the metaverse can become a worldbuilder, giving them the power to evoke memes, moods, and states of consciousness in other participants. The result is akin to a virtual brain corpus callosum between groups and individuals, allowing for direct transmission of consciousness from worldbuilder to participant. 

Of course, music, arts, entertainment, architecture, literature, and other real-world modes of expression have long been used to evoke profound brain states in participants. But XR supercharges this process, due to various factors:

  • XR interfaces create a wideband interface to the participant’s brain and nervous system. Immersive displays can place a pixel on nearly every nerve ending in the eye. 3D audio simulates spatial and spectral properties of sound. And XR controllers capture natural movement and gestures.
  • XR production tools and robust user interfaces, enhanced by AI, accelerate worldbuilding without the need to write code. Virtual worldbuilding is not burdened by the need for physical materials, construction, labor, and logistics, vastly accelerating the democratization of virtual worldbuilding compared to physical worldbuilding.
  • XR performers can easily inhabit and command virtual worlds, controlling complex interactions and effects through natural gestures and simple controllers. Imagine a live theater that suddenly morphs into a cave, a castle, or another world altogether.
  • Virtual worlds combine music, arts, entertainment, storytelling, social media, architecture, and multisensory modalities into a seamless experience for participants, compounding their psychological power. 
  • Unlike physical spaces, virtual environments are inexpensive, easily replicated, and massively scalable with global reach.

The metaverse

The XR technology market will expand by a factor of 10 in the next five years, according to a forecast by Statista. Over the long term, wearable XR interfaces are expected to replace handheld smartphones. And some expect the metaverse to replace the internet, despite Meta’s problems.

To articulate and guide the development of the metaverse “for the greatest good for the greatest number” of participants, virtual reality pioneer Tony Parisi recently proposed these Seven Rules of the Metaverse:

  1. There is only one Metaverse
  2. The Metaverse is for everyone
  3. Nobody controls the Metaverse
  4. The Metaverse is open
  5. The Metaverse is hardware-independent
  6. The Metaverse is a Network
  7. The Metaverse is the Internet
Domensions Camp at BRCvr: Immersive worlds in the Burning Man metaverse on 
Microsoft’s AltspaceVR platform (credit: Vortex Community Circle)

Widespread adoption of the metaverse using XR interfaces will place unprecedented power and influence into the hands of worldbuilders. But will worldbuilders use this power wisely? 

Digital pharmacology

XR technologies can extend beyond simple storytelling. Immersive multisensory media can evoke specific states of consciousness, or “digital pharmacology.” Applications could include enhanced entertainment, education, leisure and lifestyle, enhanced well-being, spiritual ceremonies, and a wide variety of clinical applications.

There’s a rich history of sensory experiences being used to alter consciousness. Music is a powerful mood-altering agent that can induce or modify cognitive states and perceptions. Sound healing and vibroacoustic healing have been proven effective. Simple nature sounds can improve health, increase positive affect, and lower stress

Visual stimuli such as natural environments — both real and virtual — can similarly affect physiological states (as measured by blood pressure and muscle tension). They can even alter our perception of music. Other powerful sensory modalities include haptics (touch) and aroma.

Transformational and mood-elevating experiences can take on many forms. Here’s a partial list:

  • Awaken the Mind
    • Inspire imagination, creativity, and open-mindedness
    • Educate, train, inform
    • Epiphanies and new understandings 
  • Open the Heart
    • Empathy, compassion, understanding
    • The emotional shift towards love, respect, joy, happiness
  • Activate the Spirit
  • Awe, wonder, ecstasy, bliss
  • Transcendent, numinous or “unity” experiences
  • Cosmic consciousness
  • Going Deep
    • Mindfulness and contemplative states
    • Trance, dream, and mystical states
    • Psychedelic states
  • Soothe the Beast
    • Relaxation, sense of calmness
    • Feeling of safety, restoration
  • Awaken the Senses
    • Arouse passion, romance, sensuality
  • Energize and Engage
    • Awaken the body and mind
    • Stimulate, motivate, alert, play
  • Entrain the Brain
    • New kinesthetic skills, break/make habits, reprogram

Mindfulness states have a broad range of health benefits. Studies have shown decreased anxiety and depression, improved immune function, mitigation of cognitive decline due to aging, increased mental clarity and focus, improved heart health and mental health, increased longevity and self-confidence, improved moods, improved sleep, pain mitigation and more. 

Likewise, studies have shown that psychedelic states can treat obsessive-compulsive disorder, end-of-life psychological distress, alcohol and tobacco addiction, and major depressive disorder. More research is needed to validate the degree to which XR experiences can evoke such states. However, XR applications are emerging to guide patients receiving psychedelic therapies.

Awe is one of the most powerful emotions one can experience. In a partnership with Cirque du Soleil, Dr. Beau Lotto’s Lab of Misfits conducted an ambitious study on the emotion of awe. The findings suggest that awe motivates us to step forward into a world of uncertainty in the search for answers, raises our risk tolerance, increases social behavior, and can even reframe who we believe we were in the past. Multiple studies have also found evidence that experiencing awe makes us kinder and more generous. These are all good things for this day and age!

Read Part 3

 

Let us know your thoughts! Sign up for a Mindplex account now, join our Telegram, or follow us on Twitter

The Sensor Fusion Guide by Ryan Sternlicht

This guide goes with this article “The World of Sensors” by Alex Milenkovic

INTRO

Whether we know it or not, humanity is quickly entering into an era of technology, where biosensing, biometrics, and the quantified self are combining into something transformative. These techniques will allow us to gain profound insight into ourselves, how we do things, how we think, how we are similar, and how we differ as well. Have you ever wanted to control a robot with your mind, or interact with virtual characters that respond to your emotions, what about developing a health and exercise plan specific to you that is on par with the trainers that professional athletes get. What about being able to predict the future of your own health?  Biosensor fusion can allow all of that and much more.   

In our World of Sensors article, we learned about biosensors, their data, and how they will shape our world.  This accompanying device chart explains in detail the kind of data that all of the different types of biosensors collect, and also provides a comprehensive “device guide” for comparison.

So let’s take a look at how each of these sensors work individually.

OVERVIEW

Our bodies produce a lot of different signals, which contain distinct markers and those are measured by the different sensors. These sensors give us an understanding of our body that would be hidden from us otherwise.

An exciting recent development is that many of these sensors are starting to become available to consumers and developers, bypassing the need to spend significant amounts of money, be associated with a tech company or be a part of an educational institution.

Before we can understand biosensor fusion in detail we should describe the biosensors themselves that are available, including the pros and cons of various sensors. We will discuss what each one brings to the table, the drawbacks they present, how they are best used, and how they can be combined with each other.

Technology: Eye Tracking sensors

Desktop camera based eye trackinghttps://www.tobii.com/https://tech.tobii.com/technology/what-is-eye-tracking/
Desktop camera based eye tracking 2https://www.tobii.com/https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/how-do-tobii-eye-trackers-work/
Glasses or XR device camera based eye trackinghttps://www.tobii.com/https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/how-do-tobii-eye-trackers-work/

This sensor is probably the easiest to understand as well as implement for analysis. It has been incorporated into a number of AR and VR headsets, and is available as an accessory for desktop computers as well. Most Eye Trackers use infrared emitters to shine light into your eyes. The pupils absorb the light, the rest of your eye reflects. This allows the eye tracker to accurately calculate your eye position. Some eye trackers use regular Cameras to measure and compute eye position, and although rare, you can also use an array of electrodes around the eye to track where the eye is looking, called EOG (electrooculography).

Current expectations is that Valve/OpenBCI’s galea headset will have both EOG and built in camera based eye tracking, which would be an easy form of sensor fusion. This is because EOG can have much higher temporal resolution then current eye tracking cameras, which makes the data more accurate and precise, and the EOG data can be used to further enhance the performance of foveated rendering which is highly time sensitive.  This is then coupled with the benefits of camera based eye tracking, which offers decent accuracy in a passive collection method. Further, camera based eye trackers can measure your pupil size and changes which is an extremely valuable measurement as it can be used to determine your current cognitive load. Also camera based eye trackers can be further away from the user, such as on a desk, or attached to a monitor.  Or mounted to a pair of glasses or around a VR headset’s lenses.  

OpenBCI / Valve Galea Headset prototypehttps://openbci.com/https://voicesofvr.com/996-openbcis-project-galea-collaboration-with-valve-neuro-privacy-implications-of-physiological-data/
OpenBCI / Valve Galea (Render)https://openbci.com/https://openbci.com/

Eye tracking presents us with a great example of how Sensor fusion can lead to an improved and more accurate picture of a person. HP recently released the HP Omnicept G2 VR headset, offering a combination of PPG based Heart Rate tracking and camera based eye tracking. This device offers a custom metric in the SDK, a cognitive load calculation. This metric represents how much of the user’s cognitive capacity is in use at a given moment – on a scale of 0 to 100. This metric is computed using both pupil size and heart rate variability, which can provide a higher accuracy metric of cognitive load than either sensor alone.  This calculation is also thanks to a machine learning algorithm to look at the data and give a prediction of what the current cognitive load is based on that training.  

(more on the hp research can be found here
https://developers.hp.com/system/files/attachments/HPO-CLD%20Technical%20Report%204.30.21.pdf

HP Reverb G2 Omnicept Editionhttps://www.hp.com/us-en/home.htmlhttps://www.geeky-gadgets.com/hp-reverb-g2-omnicept-edition-01-10-2020/
Varjo Aerohttps://varjo.com/https://store.varjo.com/
XTAL 8khttps://www.xtal.pro/https://www.xtal.pro/product/xtal-8k-virtual-headset
Varjo XR3https://varjo.com/https://varjo.com/products/xr-3/

Technology: Heart Rate sensor

SparkFun Single Lead Heart Rate Monitor – AD8232https://www.sparkfun.com/https://www.sparkfun.com/products/12650
HP Reverb G2 Omnicept Editionhttps://www.hp.com/us-en/home.htmlhttps://www.geeky-gadgets.com/hp-reverb-g2-omnicept-edition-01-10-2020/
SparkFun Pulse Oximeter and Heart Rate Sensor – MAX30101 & MAX32664 (Qwiic)https://www.sparkfun.com/https://www.sparkfun.com/products/15219


This is probably the most likely sensor that you might be wearing right now. If you are wearing a recent Apple watch, fitbit, smart watch,  or any fitness tracker that says it has heart rate functionality, then it probably has one of two types of sensors: a PPG (Photoplethysmogram) sensor or a EKG (electrocardiogram) sensor. EKG measures electrical impulses on the skin, usually the chest, using two electrodes to measure the pulses of electricity. PPG measures heart pulses by measuring the changes in color of the blood using an LED light and measuring the reflection. One can verify which sensor their device has as if there is light coming from the sensor, it is probably a PPG sensor, and if there are small metal contacts it is probably a EKG sensor. These each have slightly different information that they can tell you on top of your basic heart pulse rate. 

A PPG sensor can tell you a number of interesting things such as SpO2 (Blood oxygen saturation), which is how well your blood is taking up oxygen, and can be very useful in exercise or in understanding . Pi (Perfusion index) is the strength of the pulse at the location of the sensor, this is what gives form to the pleth waveform. PVi (Pleth Variability Index) is the measurement of the variability of the perfusion index, which is currently being looked at as an interesting indicator of how hydrated you are. And RRp (Respiration rate from Pleth) which measures your breathing rate based on an analysis of the pleth waveform, this is because your breathing actually affects the pressures your heart is feeling from your left lung. 

Polar variety sense optical PPG wearable (in wristband housing)https://www.polar.com/us-enhttps://www.polar.com/us-en/products/accessories/polar-verity-sense
Oura Ringshttps://ouraring.com/https://ouraring.com/

An EKG sensor can tell you a lot about the hearts movement on top of just pulse rate, it can especially tell you if there are any issues with your heart, as if the waveform from an EKG shows any out of ordinary patterns it probably means that your heart is doing something out of the ordinary. Generally you wear an EKG sensor around your chest. The problem is that outside of true clinical conditions these changes are hard to check, and verify. Though sensor fusion should definitely help with that in the future.  But adding EKG will eventually be one of the most likely sensors to save peoples lives   

Polar h10 wearable EKG chest straphttps://www.polar.com/us-enhttps://www.polar.com/us-en/products/accessories/h10_heart_rate_sensor
Common EKG signal pattern https://commons.wikimedia.org/wiki/File:EKG_Complex_en.svg

All of these measurements are extremely valuable and often are the backbone of many of the other sensors, especially as your breathing and pulse themselves affect almost every other sensor in some way. It is often critical to have this data to correlate with other sensor data.  A great example is in combination with eye tracking which I talked about before.  For those who want a picture of what it might look like from the user side would be something like the “bullet circle” in the anime Sword Art Online as the reticle changes based on your heart rate.  Another great use is to tell if someone is excited or scared as an elevated heart rate is good at detecting those, the problem is that being able to understand which one it is (fear or excitement) requires other sensors to be accurate.   


“Bullet circle” in Sword Art Online season 2, episode 2 and episode 4. Sword Art Online is owned by A-1 Pictures, Aniplex USA, and Reki Kawahara.https://www.swordart-online.net/
OpenBCI / Valve Galea Headset prototypehttps://openbci.com/https://voicesofvr.com/996-openbcis-project-galea-collaboration-with-valve-neuro-privacy-implications-of-physiological-data/
OpenBCI / Valve Galea (Render)https://openbci.com/https://openbci.com/

Emotibit (sensor side up)https://www.emotibit.com/https://shop.openbci.com/collections/frontpage/products/emotibit-kit?variant=39878320554142
Emotibit worn on arm + data GUIhttps://www.emotibit.com/https://docs.openbci.com/ThirdParty/ThirdPartyLanding/

Technology: Galvanic Skin Response (GSR) (a form of EDA(Electrodermal activity) sensor


Emotibit (sensor side up)https://www.emotibit.com/https://shop.openbci.com/collections/frontpage/products/emotibit-kit?variant=39878320554142
Emotibit worn on arm + data GUIhttps://www.emotibit.com/https://docs.openbci.com/ThirdParty/ThirdPartyLanding/
OpenBCI / Valve Galea Headset prototypehttps://openbci.com/https://voicesofvr.com/996-openbcis-project-galea-collaboration-with-valve-neuro-privacy-implications-of-physiological-data/
OpenBCI / Valve Galea (Render)https://openbci.com/https://openbci.com/

Galvanic Skin Response is a well established technology, and offers unique advantages and drawbacks. In terms of negatives, many GSR devices require 10-20 minute wait time for the sensors to accumulate sweat and be able to measure changes. Additionally, while GSR can measure general levels of emotional intensity, it is not possible to distinguish whether the experience is positive or negative. Lastly, GSR tends to be slow to change and is mainly used to show trends over time. It is possible to measure spikes which denote interesting events, but it can be difficult to isolate what stimulus is driving the overall GSR readings. In terms of advantages, GSR measures emotional state in a fairly unique way. Once correlated with the particular task it can be a reliable indicator of emotional experience.

As GSR is mostly correlated with emotional state, it can allow for another very interesting understanding of your current state. This might sound familiar if you like spy or detective movies or books, as this is one of the pieces of tech that made the polygraph (lie detector) work the way it did.  Polygraphs were usually a combination of blood pressure, pulse, respiration and galvanic skin response sensors.  And although the stated purpose of use as a lie detector, which can easily be debated, the polygraph was a perfect example of a biosensor fusion device, and thanks to the polygraph, all of the sensors used by it, are quite well documented, as well as how they behave in relation to each other. 

Technology: Skin temperature sensor


Emotibit (sensor side up)https://www.emotibit.com/https://shop.openbci.com/collections/frontpage/products/emotibit-kit?variant=39878320554142
Emotibit worn on arm + data GUIhttps://www.emotibit.com/https://docs.openbci.com/ThirdParty/ThirdPartyLanding/

Skin temperature is another interesting sensor that a few different devices (such as the emotibit, whoop, and Oura ring) have started to use. Skin temperature and body temperature do not always line up, and that can lead to some interesting insights.  Also body temperature can be a very good indicator of your immune activity, and overall health. It can also be affected by your emotional state.

Skin temperature can be measured directly by having the sensor touch the skin, which is the typical method used. More advanced temperature sensors use far infrared (FIR) to measure the body state remotely, increasing reliability and reducing the need for another sensor to make contact with the user.

Local skin temperature can change very fast and quite often.  Think about when your hands are really hot or really cold.  Skin temperature has a direct effect on your internal body temperature and your overall metabolic activity, and body’s hemodynamics, as your skin is in essence your largest organ and has massive amounts of blood flowing through it and muscles right under it.  Skin temperature trends are currently being looked into for many different short and long term health metrics related to disease, sickness, recovery period, and exercise.   

Oura Ringshttps://ouraring.com/https://ouraring.com/

Technology: humidity / temperature sensor – less Common


Emotibit (sensor side up)https://www.emotibit.com/https://shop.openbci.com/collections/frontpage/products/emotibit-kit?variant=39878320554142
Emotibit worn on arm + data GUIhttps://www.emotibit.com/https://docs.openbci.com/ThirdParty/ThirdPartyLanding/

When talking about the emotibit, we have to mention that it also has a humidity / temperature sensor that is for measuring skin perspiration, and as another sensor to measure body temperature. Perspiration is interesting because it is currently not something many biosensor devices currently measure, but can have some interesting data.  Especially when active, or when you are hot or cold, your perspiration changes quite a bit and can be useful to understand how activities are changing your perspiration amount.   


Technology: EEG (electroencephalogram) sensor

OpenBCI / Valve Galea Headset prototypehttps://openbci.com/https://voicesofvr.com/996-openbcis-project-galea-collaboration-with-valve-neuro-privacy-implications-of-physiological-data/
OpenBCI / Valve Galea (Render)https://openbci.com/https://openbci.com/

Now for the sensor that probably gets the most interest in biosensor fusion and in general when people talk about biosensors is EEG. When people start talking about controlling things with their minds this is often the device people think of.  

EEG is a technology that has been around for a while and allows the measurement of brain state through electrical signals. By placing electrodes on the scalp, the system will generate an electrical reading for the brain activity present at that location. By processing that electrical reading, or interpreting it directly, users and researchers can learn about the current brain state. There are a lot of subject specific characteristics with EEG, so it can be hard to generalize – EEG will exhibit consistent readings with the same subjects and the same tasks. EEG will measure significant differences between subjects that are doing the same tasks, and these differences will remain consistent on repeated tests. People’s brain signals are unique to them, and these differences are consistent, almost like a brain fingerprint that is unique for each person.

Most current consumer EEG devices have only a few electrodes, the Muse has 4 electrodes, and the low cost OpenBCI Ganglion also has 4 electrodes. Though this is starting to change as the electronics that are used for amplifying and recording the output of the electrodes are falling in price quite a bit every year, soon consumer devices will have many more electrodes which give much more accurate data, and a better understanding of how the different parts of our brain are working.  Soon 8 and 16 will be quite common, and down the line many developers hope that 64 or more will become much less expensive. This increase in the number of channels is important because EEG of different parts of the brain give insight into vastly different parts of what your body is doing. Good examples are that if you do eeg on the back of the head, you can get data that is related to your visual cortex (what you are currently seeing), while the top of the head can give you data related to your motor cortex (how your body moves).

Although EEG is really cool, it has a big issue and that is that on its own it is often not very useful as it becomes very hard to correlate the brainwave data with anything you are doing or thinking at the time, as there is to much data from our body that our brain is processing and it ends up overlapping.  And there can be many things that interfere or affect the signal.  That also means it is often required to do sensor fusion to get good data from EEG.  Or to use AI and machine learning constantly to improve accuracy.  When sensor fusion of EEG and almost any other sensor is done you usually can find quite interesting correlation of data.  

Neurosity Crownhttps://neurosity.co/https://www.thisiswhyimbroke.com/neurosity-focusing-crown/
Muse 2https://choosemuse.com/https://choosemuse.com/muse-2/
Muse Shttps://choosemuse.com/https://choosemuse.com/muse-s/
Starstim fNIRS https://www.artinis.com/https://www.artinis.com/starstim-fnirs/
Unicorn Hybrid Blackhttps://www.unicorn-bi.com/https://www.unicorn-bi.com/
Gten 200https://www.egi.com/https://www.egi.com/gten-100-research-neuromodulation-system/neuromodulation-eeg-systems


OpenBCI Ganglion (4 channel board)https://openbci.com/https://shop.openbci.com/collections/frontpage/products/ganglion-board?variant=13461804483
OpenBCI Cyton (8 channel board)https://openbci.com/https://shop.openbci.com/collections/frontpage/products/cyton-biosensing-board-8-channel?variant=38958638542
OpenBCI Cyton + Daisy (16 Channel board)https://openbci.com/https://shop.openbci.com/collections/frontpage/products/cyton-daisy-biosensing-boards-16-channel?variant=38959256526

Technology: fNIRS (Functional Near Infrared Spectroscopy) 

Starstim fNIRS + EEG wearable (uses artinis Brite fNIRS package)https://www.artinis.com/https://www.artinis.com/starstim-fnirs/
NIRX nirsporthttps://nirx.net/https://nirx.net/nirsport
NIRS working principle diagramhttps://www.researchgate.net/figure/Schematic-diagram-of-the-fNIRS-system-NIR-light-are-generated-and-guided-to-the-humans_fig5_322891527

An interesting piece of technology that is slowly becoming accessible to consumers is fNIRS (Functional Near Infrared Spectroscopy). This tech is all about imaging blood flow.  In some aspects it is similar to an array of PPG sensors, but it has a lot more complexity in how it works so that it can be used as an array and create images. Right now a very common use is to be used for imaging brain blood flow, though it can also be used elsewhere on the body. For sensor fusion this can work alongside EEG quite well to give a better picture of what is currently happening in the brain. Blood Flow through the brain has been shown to be linked with brain activity on multiple occasions. Though sometimes the blood flow is connected with other things then brain activity, such as emotional activity.

A good low cost version of one of these devices is the HEGduino, but it can not really create images as it is only a single sensor (basically an advanced PPG sensor device). If you have 100k burning a hole in your wallet, you can buy 50 sensors to fill up a whole Kernel flow device.  And if you have university backing there are many more options like the Kernel Flux.    

HEGduinohttps://www.hegalpha.com/https://www.crowdsupply.com/alaskit/hegduino
Kernel Flowhttps://www.kernel.com/https://semtek.vn/brain-computer-interfaces-are-making-big-progress-this-year/

Technology: ultrasound imaging sensor

Another type of imaging that is getting easier to access is ultrasound imaging.  There has been a lot of recent research into using ultrasound in combination with other biosensors. Especially for brain imaging as (TCD (Transcranial doppler Ultrasound)), it gives a much deeper image then fNIRS, but the technology is a bit less portable at the moment and often requires a large amount of area for the sensor, that could instead fit a large number of other sensors.  

Transcranial Doppler Holterhttps://www.atysmedical.com/https://www.atysmedical.com/our-products/trans-cranial-doppler-holter/


Technology: EIT (electrical impedance tomography) sensor

Spectra EIT kithttps://mindseyebiomedical.com/https://shop.openbci.com/collections/frontpage/products/spectra-openeit-kit?variant=34541328400542

Though out of all imaging technologies probably my favorite up and coming one has to be EIT. Although in its early stages, this real time medical imaging technology has a lot of potential, especially as it has fewer downsides then MRI (bad temporal resolution, big device), CT scans (radiation), and ultrasound (currently hard to wear).  It also has great temporal resolution. The problem is that it currently lacks spatial resolution.  A really cool use case for this is to do cross sectional analysis of a part of your body while you are doing an activity. If you do a cross section of your wrist you could figure out quite accurately the position of your fingers. This might even have better resolution and accuracy then using EMG, or Myoelectric sensors which will be talked about later in this article.

Technology: CT scans and MRI 

Now a bit more on the absurd and excessive side, I do have to mention that CT scans and MRI can be very helpful for sensor fusion even if they can’t be done in real time.  This is because each person’s body is different enough that bone and body structure can have noticeable impact on the accuracy of different sensors. So having an MRI or CT scan can allow for you to tune sensors to be more accurate to your body. This is extremely helpful for any form of brain related sensor fNIRS, EEG, etc, as the shape of your skull, and brain’s placement inside your skull does affect the signal that the sensor is able to receive quite a bit. The hardest part about getting an MRI other than cost itself, is that for use with EEG, you actually want to get a standing MRI scan so that it accurately places your brain in your skull in the same way that it would be when you are active in daily life. This is because your brain is in a different spot in your skull when you are lying down vs sitting or standing.   


Technology: environmental sensors


Emotibit (sensor side up)https://www.emotibit.com/https://shop.openbci.com/collections/frontpage/products/emotibit-kit?variant=39878320554142
Emotibit worn on arm + data GUIhttps://www.emotibit.com/https://docs.openbci.com/ThirdParty/ThirdPartyLanding/

Another set of sensors that have only recently been adopted into biosensor fusion, are environmental sensors to track the state of the environment around the user.  These sensors are useful in understanding how our body reacts to a changing environment. Although these sensors are not in very many devices yet, they are some of the easiest to add yourself, because many of these sensors are quite cheap and easy to get ahold of. You might even be able to use the temperature and humidity sensors on the emotibit this way if you have an extra and flip it around to have the sensors not on the skin.  


Technology: Full body tracking

UltraLeap 170 hand trackerhttps://www.ultraleap.com/https://www.ultraleap.com/product/stereo-ir-170/
Perception Neuron Studiohttps://www.neuronmocap.com/https://neuronmocap.com/ja/content/blog/perception-neuron-studio-noitom-introduces-hybrid-motion-capture-system

A somewhat common biosensor that people might have used is body motion tracking.  Although this is not always considered a biosensor itself, it is tracking your physical body in a way that other sensors can’t. And provides very important information when you connect it to other biosensors, since body movement can affect a lot of different aspects of your body, including, heart rate, brain activity, metabolism, skin temperature, etc. If you have ever used a recent gen VR headset then you have experienced at least a bit of this through controller and headset tracking which ends up tracking your hand position and head position. If you have used oculus or windows mixed reality headsets, you have used camera + IMU based tracking, if you have used a steamvr tracked headset then you have used a lidar + IMU tracked headset.        

In the near future full body tracking will become much more common outside of the motion tracking they use in movies. A big part of this has been the improvement in two things, camera based movement analysis, and IMU drift.  It was not very long ago that identifying how our body is moving in three dimensions from just 2D camera images was considered really difficult, but thanks to AI and machine learning we can now quite accurately understand the position and movement of a person’s body from a single or very few cameras. And then there is IMU drift, up until about 5 years ago using an IMU based motion capture suit was considered an unreliable option, and this is because after a very short period of time, the sensor readings would drift out of alignment with the actual position that your body was in. And if you have a suit with 20 or 30 IMU sensors, the drift would make you need to recalibrate the suit position very often.  Each type has some very good use cases, as cameras do not need to be worn on the body, but IMU tracking suits can be used while out in the everyday world.  

Perception Neuron Prohttps://www.neuronmocap.com/https://www.tomshardware.com/news/perception-neuron-pro-mocap-system,37096.html
OWO Suithttps://owogame.com/https://owogame.com/
TeslaSuithttps://teslasuit.io/https://teslasuit.io/blog/vrx-europe-2017-report/
TeslaSuit Gloveshttps://teslasuit.io/https://www.theverge.com/2019/12/26/21037855/teslasuit-glove-vr-haptic-feedback-glove-announce-pricing-release-date-ces-2020
Rokoko SmartSuit Pro 2https://www.rokoko.com/https://www.fxguide.com/fxfeatured/rokoko-starts-shipping-cool-new-affordable-mocap-suit/
SparkFun Qwiic Flex Glove Controllerhttps://www.sparkfun.com/https://www.sparkfun.com/products/14666
SparkFun VR IMU Breakout – BNO080 (Qwiic)https://www.sparkfun.com/https://www.sparkfun.com/products/14686


Technology: EMG (Electromyography) and Myoelectric sensors

MyoWare Muscle Sensor
http://www.advancertechnologies.com/p/myoware.htmlhttps://www.sparkfun.com/products/13723

When talking about body movement it is also important to consider why exactly our body is moving in the first place, and a great sensor for doing that is contact based Myoelectric sensors, which measure electrical impulses that trigger your muscle to expand or contract  using a pair of electrodes.

There are three different focuses for detecting things with EMG usually.  First is detection of The motor neurons firing, which sends very quick spike signals to the muscle.  This is quite difficult depending on the size of the muscle, and if it is hard to reach without needle based EMG sensors.  This can be used to predetermine if you are going to move a part of your body.  An example of a device focused around using this quick spike is the Brink Bionics Impulse Neurocontroller. Second is the detection of a muscle twitch which will happen from the firing of the motor neurons. Good examples of this sensor in use are the Myo armband, and the armband Meta (Facebook) has recently shown, that is based off the hardware they got when acquiring Ctrl Labs. And third is monitoring of tetanic muscle activation from continued motor neurons firing. This can be great for helping figure out how much power, or force you are putting into any one movement during something like full body tracking or while doing sports, or how fatigued your muscles are after a workout. 

Another interesting use case is to map facial position, by having the sensors on the face, the Galea will have EMG, it will only be for the face.   


brink bionics impulse neurocontroller (Render)https://www.brinkbionics.com/https://www.brinkbionics.com/
OpenBCI / Valve Galea Headset prototypehttps://openbci.com/https://voicesofvr.com/996-openbcis-project-galea-collaboration-with-valve-neuro-privacy-implications-of-physiological-data/

OpenBCI / Valve Galea (Render)https://openbci.com/https://openbci.com/

As we can see, the ability to measure people has grown to a capacity that was never possible before. We can passively observe what someone finds interesting in a given scene or encounter, measure the brain state that experience generates, and record the intensity and enjoyability of the experience. This will allow quantification of many things that are currently invisible to us. Imagine a couple recording their biometric responses to various TV shows, so that they can make better decisions on what to watch together based on how enjoyable it will be for both parties. Lecturers will be able to monitor student volunteers during presentations to see how it makes the students feel and tune their material accordingly. Car manufacturers will be able to passively observe driver fatigue and attention and design safer cars that notify the driver when their attention is lacking or needed to deal with an urgent issue. Companies will be able to design easier to use and understand packaging based on consumer response. A doctor could observe a patient’s reactions to their explanation of some diagnosis, note a place where confusion occurs, and revisit that aspect. All of these will finally allow us to get past the current difficulties presented by placebo, self report, and an inability to quantify and compare people’s experiences.

On a fundamental level, something worth noting is that many people don’t really trust or believe that people are having the experience they claim to have, as much of the time we don’t have a way to quantify or verify whether this is the case. If someone says they are scared, or angry, or happy, or frustrated, or confused – there’s often an element of doubt present as the only information available is what the person claims is happening to them. If someone says they enjoyed a movie, we might assume they are praising the movie for some other reason other than liking the film. If someone says they enjoyed a meal, perhaps they enjoyed the company and social setting but didn’t enjoy the food one bit. With sensor data, we’d be confident in what they were saying – or they could volunteer to share the data with others – which has profound implications for our society and the way we see each other. 

These sensors will provide a wealth of data about us, our lives, and our patterns. We will need strong laws and motivated legislatures to ensure the protections necessary to make these sensors safe and ubiquitous. 

Let us know your thoughts! Sign up for a Mindplex account now, join our Telegram, or follow us on Twitter